
WHO: Ariadna Quattoni, Technical University of
Catalonia (and MHC CS alum!)

WHEN: 12:15pm, Monday, Mar. 4

WHERE: Kendade 307

TITLE: Methods for Automatic Image Tagging and
Retrieval

Talk Announcment

Plan for Today: MST

Proofs of Prim and Kruskal
Remove distinctness assumption
Implementation

Prim - O(m log n)
Kruskal - O(m log n), with Union-Find data
structure

Network design: beyond MST

Prim Implementation
T = {}
S = {s}
While S != V {

Let e = (u, v) be the minimum cost edge from
S to V-S

T = T ∪ {e}
S = S ∪ {v}

}

Prim Implementation
T = {}, S = {s}

for all edges e = (s, v) incident to s
 a[v] = ce // maintain attachment cost for v
 edgeTo[v] = e; // edge with smallest attachment cost
end

while S != T {
let v be node that minimizes a[v], and let e = edgeTo[v]
T = T ∪ {e}
S = S ∪ {v}
for all edges e = (v, w) incident to v
 if ce < a[w] then

a[w] = ce

edgeTo[w] = e
 end
end

}

Analogous to Dijsktra: O(m log n)
using heap-based priority queue

n x extractMin → n log n

m x changeKey → m log n

Kruskal Implementation?

Sort edges by weight: c1 ≤ c2 ≤ … ≤ cm

T = {}
for e = 1 to m {
 if T ∪ {e} does not contain a cycle {
 T = T ∪ {e}
 }
}

Loop executes m times. How much time does it
take to check if T ∪ {e} has a cycle?

Cycles?

Let e = (u, v). When does T ∪ {e} have a
cycle?

When there is already a path from u to v

u and v are in the same connected
component in G’ = (V, T)

How do we check this?

First Cut

Let e = (u, v). When does T ∪ {e} have a
cycle?

Run BFS from u in G’ = (V, T) to see if v is
currently reachable from u (time: O(n))

Total time: O(mn)

(We can do better)

Better Approach
Explicitly maintain connected components

 Sort edges by cost: c1 ≤ c2 ≤ ... ≤ cm.
 T ← {}
 for each u ∈ V make a singleton set {u}
 for each edge ei = (u, v)
 if (u and v are in different sets) {
 T ← T ∪ {ei}
 merge the sets containing u and v
 }

Goal: O(log n) for all operations → O(m log n) overall

Union-Find

Data structure to maintain disjoint sets

Operations:
Find(v) - determine which set a node is in
Union(S1, S2) - merge two sets

Useful for Kruskal and other algorithms!

Union-Find: First Try
Array-based implementation: for each node,
store the name of the component it belongs to

Work through this on board

Worst-case running time:
Find: O(1)
Union: O(n)

Can be improved so that any sequence of n
Union operations takes O(n log n), but we’ll
abandon in favor of better apparoch

Pointer-Based
Union-Find

Idea: elect a node to represent each set, so

name of set = name of representative node

Each node maintains a pointer to its
representative

A Faster Union

Associate with each node a pointer to its name.

a

e

b d

c

f

1

1

1

1 1
2

3

4

a c fedb

A Faster Union
On Union, update the head pointer of the
smaller set.

a

e

b d

c

f

1

1

1

1 1
2

3

4

a c fedb

A Faster Union

a

e

b d

c

f

1

1

1

1 1
2

3

4

a c fedb

A Faster Union

a

e

b d

c

f

1

1

1

1 1
2

3

4

a c fedb

A Faster Union

a

e

b d

c

f

1

1

1

1 1
2

3

4

a c fedb

A Faster Union

a

e

b d

c

f

1

1

1

1 1
2

3

4

a c fedb

Pointer-Based Union Find

Union(S1, S2) - O(1) (update pointer)
Find(v) - ??? (follow pointers to representative)

Claim: if we follow convention of updating the
pointer of the smaller set, then Find(v) is O(log n)

Example and proof on board

Summary

Kruskal is O(m log n) with appropriate Union-
Find data structure

Possible to improve Union-Find even more so
Kruskal becomes O(m α(n)), where α(n) is
inverse Ackerman’s function

Grows incredibly slowly (essentially constant)

Network Design:
Steiner Tree Problem

Given: undirected graph G =
(V, E) with edge costs ce > 0
and terminals X ⊆ V

Find: edge subset T ⊆ E such
that (V, T) has a path between
each pair of terminals and the
total cost ∑e ∈ T ce is as small
as possible

a"

b"

e"

c"

f"

d"

1"

3"

4"

5"

8"

9"

2"

7"

6"

Easier? Harder?

