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Plan for Today: MST

Proofs of Prim and Kruskal
Remove distinctness assumption
Implementation

Prim - O(m log n) 
Kruskal - O(m log n), with Union-Find data 
structure

Network design: beyond MST



Prim Implementation
T = {}
S = {s}
While S != V { 

Let e = (u, v) be the minimum cost edge from 
S to V-S

T = T ∪ {e}
S = S ∪ {v}

}



Prim Implementation
T = {}, S = {s}

for all edges e = (s, v) incident to s
   a[v] = ce         // maintain attachment cost for v
   edgeTo[v] = e;  // edge with smallest attachment cost 
end

while S != T { 
let v be node that minimizes a[v], and let e = edgeTo[v]
T = T ∪ {e}
S = S ∪ {v}
for all edges e = (v, w) incident to v
    if ce < a[w] then

a[w] = ce

edgeTo[w] = e
    end
end

}

Analogous to Dijsktra: O(m log n) 
using heap-based priority queue

n x extractMin → n log n

m x changeKey → m log n



Kruskal Implementation?

Sort edges by weight: c1 ≤ c2 ≤ … ≤ cm

T = {}
for e = 1 to m {
   if T ∪ {e} does not contain a cycle {
      T = T ∪ {e}
   } 
}

Loop executes m times. How much time does it 
take to check if T ∪ {e} has a cycle?



Cycles?

Let e = (u, v). When does T ∪ {e} have a 
cycle?

When there is already a path from u to v

u and v are in the same connected 
component in G’ = (V, T)

How do we check this?



First Cut

Let e = (u, v). When does T ∪ {e} have a 
cycle?

Run BFS from u in G’ = (V, T) to see if v is 
currently reachable from u (time: O(n))

Total time: O(mn) 

(We can do better)



Better Approach
Explicitly maintain connected components

   Sort edges by cost: c1 ≤ c2 ≤ ... ≤ cm.
   T ← {}
   for each u ∈ V make a singleton set {u}
   for each edge ei = (u, v)
      if (u and v are in different sets) {
         T ← T ∪ {ei}
         merge the sets containing u and v
      }

Goal: O(log n) for all operations → O(m log n) overall



Union-Find

Data structure to maintain disjoint sets

Operations:
Find(v) - determine which set a node is in
Union(S1, S2) - merge two sets

Useful for Kruskal and other algorithms!



Union-Find: First Try
Array-based implementation: for each node, 
store the name of the component it belongs to

Work through this on board

Worst-case running time:
Find: O(1)
Union: O(n)

Can be improved so that any sequence of n 
Union operations takes O(n log n), but we’ll 
abandon in favor of better apparoch



Pointer-Based 
Union-Find

Idea: elect a node to represent each set, so

name of set = name of representative node

Each node maintains a pointer to its 
representative



A Faster Union

Associate with each node a pointer to its name.
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A Faster Union
On Union, update the head pointer of the 
smaller set.
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A Faster Union
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A Faster Union
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A Faster Union
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A Faster Union
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Pointer-Based Union Find

Union(S1, S2) - O(1) (update pointer)
Find(v) - ??? (follow pointers to representative)

Claim: if we follow convention of updating the 
pointer of the smaller set, then Find(v) is O(log n)

Example and proof on board



Summary

Kruskal is O(m log n) with appropriate Union-
Find data structure

Possible to improve Union-Find even more so 
Kruskal becomes O(m α(n)), where α(n) is 
inverse Ackerman’s function

Grows incredibly slowly (essentially constant)



Network Design:
Steiner Tree Problem

Given: undirected graph G = 
(V, E) with edge costs ce > 0 
and terminals X ⊆ V

Find: edge subset T ⊆ E such 
that (V, T) has a path between 
each pair of terminals and the 
total cost ∑e ∈ T ce is as small 
as possible
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